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Berenger and Leaky Modes in Microstrip Substrates
Terminated by a Perfectly Matched Layer

Hendrik Rogier and Daniël De Zutter

Abstract—In this paper, it is shown that the dispersion relation of a mi-
crostrip substrate terminated by a perfectly matched layer (PML) allows
two sets of zeros. For a strongly absorbing PML, the first set does not de-
pend on the characteristics of that layer. Within a good approximation, it
corresponds to the leaky modes of the microstrip substrate. The second set
is not influenced by the microstrip substrate. Since it mainly depends on
the characteristics of the PML, this set of modes are called the Berenger
modes. Analytic expressions are derived for these two sets of zeros in the
quasi-static limit.

Index Terms—Absorbing media, dielectric load waveguides, Green’s
function, leaky waves, microstrip.

I. INTRODUCTION

A perfectly matched layer (PML), as introduced by Berenger [1],
combines as good absorption of electromagnetic fields in the direction
perpendicular to the layer with a good phase matching at the interface
between the PML and adjacent medium. This can either be achieved
by a suitable choice of uniaxial anisotropic material parameters for the
PML [2] or by stretching the coordinates in Maxwell’s equations [3],
[4].

Besides its usefulness as an excellent absorbing boundary condition
in finite-element and finite-difference time-domain scattering codes,
PMLs can also be applied to perform efficient calculations in wave-
guide configurations. The PML then mimics an open configuration,
while an efficient problem description in terms of a set of discrete
modes of the closed waveguide containing the PML is possible [5], [6].
A key issue in this approach is the knowledge of the eigenvalues� and
eigenmode profiles pertaining to the PML waveguide configuration.

In this paper, we will discuss some properties of the eigenmodes that
can exist in two-dimensional (2-D) waveguides formed by a microstrip
substrate terminated by a PML. For a strongly absorbing PML, the so-
lution of the dispersion relation allows two sets of zeros. It is shown
that one set corresponds to the leaky modes of the microstrip substrate,
while the second set mainly depends on the characteristics of the PML.
For both sets of eigenvalues, analytic approximations can be derived in
the quasi-static limit. In Section II, the properties of the TE modes are
discussed, while in Section III, TM modes are discussed. Finally, the
theoretical results are illustrated by numerical data in Section IV.

II. THEORY—TE MODES

Consider the configuration shown in Fig. 1, consisting of a mi-
crostrip substrate with permittivity�r , permeability�r , and thickness
d. Above the substrate, an air region is present with thicknessdair, ter-
minated by a PML with thicknessdPML and with material parameters
�0 and�0 [5]. In [7], it is shown that, by stretching the coordinates,
the air region can be combined with the PML to form a single air
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Fig. 1. Microstrip configuration.

layer with complex thickness~d = dair + dPML(�0 � j(�0=!�0)).
This allows a relatively simple modal analysis of the waveguide under
consideration.

For modes propagating in they-direction with propagation constant
�, the TE eigenmode profiles of the configuration are given by

Ex(y; z) =

A sin(
rz) sin 
0 ~d e�j�y; 0 < z < d

A sin(
rd) sin 
0 ~d+ d� z e�j�y;

d < z < d+ dair

(1)

with A being a normalization factor and
r and
0 satisfying

Yr cot(
rd) = �Y0 cot 
0 ~d (2)

with 
20 = k20 � �2, 
2r = k20�r�r � �2, Yr = 
r=�0�r andY0 =

0=�0, andk20 = !2�0�0. To assure propagation in the+y-direc-
tion with a bounded mode profile, the propagation constants must obey
Re(�) � 0 and Im(�) � 0. Branch cuts are then chosen so that
Re(
r), Re(
0) � 0, andIm(
r), Im(
0) � 0.

We will now concern ourselves with the solution of the dispersion
relation (2). This expression can be rewritten as

e�2j
 d =
Yr + Y0 + (Y0 � Yr)e

�2j
 ~d

Y0 � Yr + (Yr + Y0)e�2j

~d
: (3)

No simple analytical solutions for the eigenvalues� can be found for
(2). However, when the PML acts as a strong absorber, some approxi-
mations can be made in order to simplify the dispersion relations. We
will distinguish between the following two particular cases.

1) For the first set of modes, we assume that most of the modal
field is concentrated in the microstrip substrate, while the
PML strongly attenuates the field. This corresponds to the
assumption thatjRe(
0)jdPML(�0=!�0) is large and that
jIm(
0)j � (dPML(�0=!�0)=(dair + dPML�0))jRe(
0)j. We
then haveje�2j


~dj � 1; this is the case of a perfect absorbing
boundary condition. The problem reduces to the classical
microstrip substrate, for which the dispersion relation is given
by

Yr cot(
rd) = �jY0: (4)

ForRe(
0) > 0, (2) can be rewritten as

e�2j
 d =
Yr + Y0
Y0 � Yr

: (5)

The solutions of this equation in the complex plane are known
as the leaky modes of the microstrip substrate.
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2) For the second set of modes, we assume that most of the modal
field is concentrated in the PML, while a strong attenuation
is found in the microstrip substrate. This is satisfied when
jIm(
r)jd is large, implying thatje+2j
 dj � 1; thus, (2) can
be written as

e
�2j
 ~d =

Yr � Y0

Yr + Y0
: (6)

Since the behavior of this type of modes mainly depends on the
characteristics of the PML, we will call them Berenger modes.

We will now look for analytic solutions for the propagation constants
of the leaky and Berenger modes in the quasi-static limit. The assump-
tion that!

p
�0�0 � � allows the approximation


r � 
0 � +j�: (7)

A. Leaky Modes

Equation (5) can be written as

e
2j
 d = k

2
0

�2r � �r�r

(
0�r + 
r)2
� �

2 �2r � 1

(
0�r + 
r)2
: (8)

Applying the quasi-static approximation (7) yields

e
2j
 d =

k20


2r

�2r � �r�r

(�r + 1)2
+

�r � 1

�r + 1
: (9)

If one assumes that�r 6= 1, this equation is satisfied by

+j� � 
r � 1

2jd
log

�r � 1

�r + 1
+

n�

d
: (10)

For�r = 1, (8) reduces to

e
2j
 d =

k20


2r

1� �r

4
: (11)

Closed-form solutions of this equation can be found under the form of
Lambert W [8] functions

+j� � 
r � � j

d
LambertW m; �1

2
k0d

p
�r � 1 : (12)

The zeros can be approximated by

+j� � 
r � (2n+ 1)�

2d
+ j

1

d
log

(2n+ 1)�

k0d
p
�r � 1

: (13)

B. Berenger Modes

Under quasi-static approximation (7) and for�r 6= 1, (6) reduces to

e
�2j
 ~d =

1� �r

1 + �r
: (14)

For�r 6= 1, the zeros that characterize the Berenger modes are easily
found by

+j� � 
0 � � 1

2j ~d
log

�r � 1

�r + 1
+
(2n+ 1)�

2 ~d
: (15)

In the particular case of no magnetic contrasts and for�r 6= 1, (6)
reduces to

e
�2j
 ~d =

k20(�r � 1)

4
20
(16)

Fig. 2. Location of the eigenvalues�=k of the TE modes for a
microstrip–PML configuration with magnetic contrast.

TABLE I
LOCATION OF SOME EIGENVALUES �=k OF LEAKY MODES

TABLE II
LOCATION OF SOME EIGENVALUES �=k OF BERENGERMODES

Fig. 3. Location of the eigenvalues�=k of the TE modes for a
microstrip–PML configuration without magnetic contrast.
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TABLE III
LOCATION OF SOME EIGENVALUES �=k OF LEAKY MODES

TABLE IV
LOCATION OF SOME EIGENVALUES �=k OF BERENGERMODES

in the quasi-static limit. Closed-form solutions of this equation also
exist under the form of Lambert W functions

+j� � 
0 � j
~d
LambertW �m; �j 1

2
k0 ~d
p
�r � 1 : (17)

The zeros can be approximated by

+j� � 
0 � n�
~d
� j

1
~d
log

2n�

k0 ~d
p
�r � 1

: (18)

III. T HEORY—TM MODES

The TM eigenmode profiles of the waveguide shown in Fig. 1 are
given by

Hx(y; z) =

A cos(
rz) cos 
0 ~d e�j�y; 0 < z < d

A cos(
rd) cos 
0 ~d+ d� z e�j�y;

d < z < d+ dair

(19)

with 
r and
0 satisfying

Yr cot(
rd) = �Y0 cot 
0 ~d (20)

with Yr = �r�0=
r andY0 = �0=
0.
Following the same line of reasoning as in Section II, one can again

distinguish between leaky modes, depending on the microstrip sub-
strate, and Berenger modes, mainly influenced by the PML. For�r 6= 1,
one finds the following closed-form expression for the leaky mode so-
lution in the quasi-static limit:


 =
1

2jd
log

�r � 1

�r + 1
+

(2n+ 1)�

2d
: (21)

As for the Berenger modes, the following solution is found:


0 = � 1

2j ~d
log

�r � 1

�r + 1
+
n�
~d
: (22)

IV. EXAMPLES

In order to illustrate the theory developed in the previous sections,
we consider a microstrip–PML configuration withd = 9 mm,dair =
5 mm, anddPML = 3:5 mm at 12 GHz. A strongly absorbing PML is
obtained for�0 = 10 and�0=!�0 = 8. Let us first study a microstrip
substrate with magnetic and electric contrasts, choosing, e.g.,�r = 3
and�r = 2. In Fig. 2, the propagation constants of the TE modes are
shown. Besides the exact locations of the normalized modal constants
obtained with a numerical root-solving routine, the quasi-static eigen-
values is given, following the analytic formulas (10) and (15), which
were derived under the assumption (7). For increasing magnitudes of
�, the analytic expressions (10) and (15), respectively, for the leaky
and Berenger modes, are seen to convergence to the exact locations
of the normalized modal constants�=k0, as illustrated in Tables I and
II. Compared to the exact eigenvalue for the leaky modes, (10) yields
values with a 1% relative accuracy forn > 12. For the Berenger modes,
a 1% relative accuracy is obtained with (15) forn > 27.

In Fig. 3, the propagation constants of the TE modes are shown,
when there are no magnetic contrasts, i.e., when�r = 3 and�r = 1.
The exact locations of the normalized modal constants obtained with a
numerical root-solving routine are compared to the quasi-static eigen-
values, following the analytic formulas (13) and (18), which were de-
rived under assumption (7). Again, good agreement is seen between the
exact locations of the eigenvalues and the� values obtained with the
analytic expressions (13) and (18) whenever� becomes large, as com-
pared tok0, as demonstrated in Tables III and IV. Compared to the exact
eigenvalue for the leaky modes, (13) yields values with a 1% relative
accuracy forn > 10. For the Berenger modes, a 1% relative accuracy
is obtained with (18) forn > 27. Similar observations hold for the
propagation constants of the TM modes, as demonstrated in Fig. 4.
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Fig. 4. Location of the eigenvalues�=k of the TM modes for a
microstrip–PML configuration.

V. CONCLUSIONS

Analytic expressions in the quasi-static limit are derived for two sets
of zeros, which exist in a microstrip substrate terminated by a PML.
For a strongly absorbing PML, it is shown that the first set corresponds
to the leaky modes of the microstrip substrate, whereas the second set,
termed Berenger modes, is not influenced by the microstrip substrate.
As demonstrated by examples, the analytical formulas allow a quick
calculation of the modal constants whenever!

p
�0�0 � �. Moreover,

the quasi-static expressions can be used as initial guesses in a numer-
ical root-finding routine that can provide more accurate values for the
zeros of the dispersion relation. Thereby, our results can speed up the
calculation of the Green’s function of the microstrip substrate termi-
nated by a PML, as discussed in [5].
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Wide-Bandwidth Millimeter-Wave
Bond-Wire Interconnects

Thomas P. Budka

Abstract—A new type of interconnect has been developed that signifi-
cantly extends the bandwidth of fixed-length bond-wire interconnects be-
tween microwave circuits. This interconnect maximizes bond-wire length,
as well as landing pad size while simultaneously extending the cutoff fre-
quency of the interconnect. The bond-wire interconnect is treated as a five-
stage low-pass filter where basic filter theory is used to develop an intercon-
nect prototype. Microstrip interconnects are designed using electromag-
netic simulators, which match a specific low-pass filter response on a 5-mil-
thick (127 m) glass substrates. The measurements indicate a return loss
greater than 12 dB and an insertion loss from 0.0 to 0.3 dB from dc to
80 GHz using two 17-mil-long (432 m) 1-mil-diameter (25 m) ball bonds
with a tolerance of 2 mil (50 m). For comparison, an uncompensated
interconnect with two 17-mil-long (432 m) bond wires has 1-dB insertion
loss and 10-dB return loss at 40 GHz and continues to degrade at higher
frequencies.

I. INTRODUCTION

Historically, chip-to-chip interconnects using bond wires have been
analyzed as having a single electrical component: a series inductor. In
order to improve the high-frequency performance of a bond-wire in-
terconnect, efforts have usually focused on reducing the length of the
bond wire and also reducing the chip-to-chip spacing. However, lim-
itations in manufacturing require longer bond-wire lengths and wider
chip-to-chip spacing to improve the yields of millimeter-wave multi-
chip assemblies (MCAs). Therefore, the goal for millimeter-wave in-
terconnect design is to maximize bond-wire length to improve manu-
facturability and maximize bond pad size so that mechanical tolerances
are eased. This paper demonstrates that this is possible with a filter
theory approach to interconnect design.

A single bond-wire interconnect can be treated as a single-stage
low-pass filter with a fixed cutoff frequency. As more stages of the filter
are added, the bandwidth of the filter increases until adding additional
stages becomes inappropriate due to unacceptable filter losses. Usually
low-pass filters are between three and seven stages. For this specific
design example, the bond-wire interconnect is treated as a five-stage
low-pass filter.

Fig. 1 displays a five-stage low-pass filter prototype with se-
ries inductors and shunt capacitors. There are well-known published
tables in the literature of the relative values of the inductances
and capacitances for filter design [1]. For example, if a 0.5-dB
equal-ripple response is desired, then a single inductor filter would
have an inductance of0:70L. A five-stage equal-ripple filter with
the same cutoff frequency would have a center inductor of2:54L

and two outer inductors of1:71L [2], where L is the inductance
that selects the cutoff frequency of the filter. This implies that for
the same cutoff frequency of the single- and five-stage filter, the
center inductor in the five-stage design can have a 3.6 times higher
inductance than a single inductor design. This directly translates
into a 3.6 times longer bond wire for the same cutoff frequency.
The ability to lengthen the bond wires is critical for high-yield as-
sembly of millimeter-wave multichip modules.
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