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Short Papers

Berenger and Leaky Modes in Microstrip Substrates PEC
Terminated by a Perfectly Matched Layer Ko, Gy dem
Hendrik Rogier and Daniél De Zutter ITR air z
T d
Abstract—n this paper, it is shown that the dispersion relation of a mi- PEC y

crostrip substrate terminated by a perfectly matched layer (PML) allows
two sets of zeros. For a strongly absorbing PML, the first set does not de- Fig. 1. Microstrip configuration.
pend on the characteristics of that layer. Within a good approximation, it
corresponds to the leaky modes of the microstrip substrate. The second set B
is not influenced by the microstrip substrate. Since it mainly depends on layer with complex thicknesg = daix + dpwmr (ko — j(oo/wen)).
the characteristics of the PML, this set of modes are called the Berenger This allows a relatively simple modal analysis of the waveguide under
modes. Analytic expressions are derived for these two sets of zeros in the . .
quasi-static limit. consideration.
For modes propagating in thyedirection with propagation constant

Index Terms—Absorbing media, dielectric load waveguides, Green’s 3, the TE eigenmode profiles of the configuration are given by

function, leaky waves, microstrip.

Asin(vrz) sin (w,"oci) e IR, 0<z<d

. Eu(y.2) = Asin(vrd) sin [“yo (ci+ d— z)] e,ﬂﬂy, (1)
A perfectly matched layer (PML), as introduced by Berenger [1],
combines as good absorption of electromagnetic fields in the direction d <z < d+ dair
perpendicular to the layer with a good phase matching at the interf; : N N g
between the PML and adjacent medium. This can either be achieveI 4 being a normalization factor and and-, satisfying
by a suitable choice of uniaxial anisotropic material parameters for the Y, cot(v,d) = —Ya cot (”md~> )
PML [2] or by stretching the coordinates in Maxwell's equations [3],

[4]. G2 12 g2 2 72 a2 v o~ A
Besides its usefulness as an excellent absorbing boundary C,ondi%'i\gth 0= k02 A S koerpr = 37, Yy = ’T/'u'o.“’” andylo N
o0 /1t0, andky = w eopo. TO assure propagation in they-direc-

in finite-element and finite-difference time-domain scattering code, ; ) .

. . . > ibn with a bounded mode profile, the propagation constants must obey
PMLs can also be applied to perform efficient calculations in wav fe(3) > 0 andTm(3) < 0. Branch cuts are then chosen so that
guide configurations. The PML then mimics an open configuratio 'e(‘%) —Re(%) >0 ‘andfm(;' ), Tm(0) > 0
while an efficient problem description in terms of a set of discrete Wé v;/ill now cc_)nc’ern oursélrvés Wit)h the slolution of the dispersion
modes of the closed waveguide containing the PML is possible [5], [GrJe'Iation (2). This expression can be rewritten as
A key issue in this approach is the knowledge of the eigenvaiwssd '
eigenmode profiles pertaining to the PML waveguide configuration. s Y4 Yot (Yo-Y, )6—2'7""0;’

In this paper, we will discuss some properties of the eigenmodes that e Ml = =

can exist in two-dimensional (2-D) waveguides formed by a microstrip
substrate terminated by a PML. For a strongly absorbing PML, the Qo simple analytical solutions for the eigenvalugsan be found for
lution of the dispersion relation allows two sets of zeros. It is showd). However, when the PML acts as a strong absorber, some approxi-
that one set corresponds to the leaky modes of the microstrip substraigtions can be made in order to simplify the dispersion relations. We
while the second set mainly depends on the characteristics of the Pl distinguish between the following two particular cases.

For both sets of eigenvalues, analytic approximations can be derived irh) For the first set of modes. we assume that most of the modal
the quasi-static limit. In Section Il, the properties of the TE modes are ~ 44 is concentrated in t,he microstrip substrate, while the

dkllscussfedl, Wh”? n Se_ﬁnon I”‘JEA modes_artledd|sc1_JssSed. _Fln?\l/ly, the PML strongly attenuates the field. This corresponds to the
theoretical results are illustrated by numerical data in Section IV. assumption thatiRe(vo)|doa (00 /weo) is large and that

[Im(v0)| < (dpML(00/wen)/ (dair + dpmL ko)) |[Re(qo)]. We

|. INTRODUCTION

. 3
Yo — Yy 4 (Y, 4 Yy)e—2ir0d @

Il. THEORY—TE MODES then havde=2770%| « 1; this is the case of a perfect absorbing
Consider the configuration shown in Fig. 1, consisting of a mi- ~ boundary condition. The problem reduces to the classical
crostrip substrate with permittivity, , permeabilityy.., and thickness microstrip substrate, for which the dispersion relation is given
d. Above the substrate, an air region is present with thickidgsster- by

minated by a PML with thicknesgenr, and with material parameters
ko andaoo [5]. In [7], it is shown that, by stretching the coordinates,
the air region can be combined with the PML to form a single air

Y, cot(v,d) = —jYo. 4)

ForRe(v0) > 0, (2) can be rewritten as
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2) For the second set of modes, we assume that most of the moc Re(;f%)
field is concentrated in the PML, while a strong attenuation 0 . — .
is found in the microstrip substrate. This is satisfied when 5 quasi-static Cigenvﬁﬁzgtlgﬁey“;ﬂgzz I
[Im(+,)|d is large, implying thate ¥2/774| « 1; thus, (2) can 10 quasi-static eigenvalues Berenger modes x|
be written as 215
Cajd Ve - Yo 2) 20 N
2jvod __ Ar 0 6 Im (ko) \
€ =5 - (6) 25
Y, +Y, \
Since the behavior of this type of modes mainly depends on th 35 \
characteristics of the PML, we will call them Berenger modes. 40
We will now look for analytic solutions for the propagation constants 45 \\
of the leaky and Berenger modes in the quasi-static limit. The assum| 50
tion thatw,/ep 10 < 3 allows the approximation 0 5 10 15 20 25 30 35
Ve R Y0 R +58. (7)  Fig. 2. Location of the eigenvaluegl/k, of the TE modes for a

microstrip—PML configuration with magnetic contrast.

A. Leaky Modes

Equation (5) can be written as TABLE |
LOCATION OF SOME EIGENVALUES /3/]4:0 OF LEAKY MODES

2 2
2jypd _ 32 Mo = Hrér 22 Hyr = 1
e = ko — —5 — 0 —5- (8)
(opr +7) Gopr + ) n (10) | quasi-static eigenvalue (10) | exact eigenvalue
Applying the quasi-static approximation (7) yields 10 0.242846-j13.888889 | 0.250684-j13.671399
(2 _ kg p?—prer e —1 ©) 15 0.242846-j20.833333 | 0.246270-j20.688893
Y (e +1)2 0 41 20 0.242846-j27.777778 | 0.244760-j27.669592
If one assumes that. # 1, this equation is satisfied by 25 0.242846-j34.722222 | 0.244068-j34.635727
30 0.242846-j41.666667 | 0.243694-j41.594612
+'43z~,zilog pr =1 + 1T (20)
Y el TR A
For i, = 1, (8) reduces to
TABLE I
2jvrd _ ﬁ 1—e, (1) LOCATION OF SOME EIGENVALUES 3/ k, OF BERENGERMODES
w4
. . . 1 i-static ei 1 1 t ei 1
Closed-form solutions of this equation can be found under the form of n (15) | quasi-static eigenvalue (15) exact eigenvalue
Lambert W [8] functions 20 2.972975-j4.325166 3.023709-j4.244097
j 1 40 5.909215-j8.519796 5.935769-j8.479484
+ip R g = LambertW <m‘/ +5 kodver = 1) ) 60 8.845455-j12.714426 | 8.863462-j12.687615
The zeros can be approximated by 80 11.781695-j16.909056 | 11.795322-j16.888975
@ 0 ) @ D 100 14.717935-j21.103686 | 14.728898-j21.087635
. n—+1)mw , 2n+ 1)7w
Ay R ——— = log ————~—.
Al sa gl ae—t W
i
B. Berenger Modes Re ()
0 . . . . :
Under quasi-static approximation (7) and for # 1, (6) reduces to 512 quasi-statc cigeny ﬁiﬁﬁiﬁi‘;“ﬁﬂﬁiﬁ o
® - +
. 1 10 -% quasi-static eigenvalues Berenger modes |
ﬁ—?jﬁ/od _ - Hr . (14) @
1+ pe -15 _
(2) 20
For . # 1, the zeros that characterize the Berenger modes are eas’ (k) 25 ‘\\
found by ol N
HiB 0 & — o [P =L 4 Bt DT (15) . \\
N N T 2d :g
In the particular case of no magnetic contrasts and:foet 1, (6) -50 0 5 0 5 o > 3‘0 s
reduces to
6—2,’70{1 _ kﬁ(e,, -1) (16) Fig. 3. Location of the eigenvalueg/k, of the TE modes for a

472 microstrip—PML configuration without magnetic contrast.
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TABLE 1lI
LOCATION OF SOME EIGENVALUES 3/kq OF LEAKY MODES

n (13) | quasi-static eigenvalue (13) quasi-static eigenvalue (12) exact eigenvalue
10 1.337986-j14.583333 1.338619-j14.542753 (m = 5, -) | 1.347096-j14.439964
15 1.510167-j21.527778 | 1.510618-j21.496761 (m = 8, +) | 1.515046-j21.427159
20 1.633771-j28.472222 | 1.634104-j28.446854 (m = 10, -) | 1.636861-j28.394223
25 1.730260-j35.416667 | 1.730518-j35.395069 (m = 13, +) | 1.732413-j35.352751
30 1.809417-j42.361111 | 1.809623-j42.342228 (m = 15, -) | 1.811013-j42.306843
TABLE IV

LOCATION OF SOME EIGENVALUES ﬂ/k‘g OF BERENGERMODES

n (18) | quasi-static eigenvalue (18) quasi-static eigenvalue (17) exact eigenvalue
20 2.832825-j4.327772 2.830502-j4.326278 (m = 10, -) 2.883047-j4.244715
40 5.722792-j8.554795 5.721262-j8.553756 (m = 20, -) 5.748065-j8.513185
60 8.631965-j12.768374 | 8.630773-j12.767587 (m = 30, -) | 8.648833-j12.740622
80 11.549001-j16.976449 | 11.548000-j16.975819 (m = 40, -) | 11.561632-j16.955634
100 14.470346-j21.181508 | 14.469469-j21.180986 (m = 50, -) | 14.480420-j21.164859

in the quasi-static limit. Closed-form solutions of this equation alsés for the Berenger modes, the following solution is found:
exist under the form of Lambert W functions

e — 1 nw
j 1. - Yo = ——=log 1‘ - (22)

+j8 =y = —iLambertW <—m, :l:j§ kodver — 1) . a7 2jd e + d

a
The zeros can be approximated by IV. EXAMPLES
i 1 I In order to illustrate the theory developed in the previous sections,
+j0xrvwr — —j=log——. 18 i i in— i i i L=
J Y0 7 J i g ko dv/er =1 (18)  we consider a microstrip—PML configuration with= 9 mm, d.;,

5 mm, anddemr, = 3.5 mm at 12 GHz. A strongly absorbing PML is
obtained forsg = 10 andoo/weq = 8. Let us first study a microstrip
substrate with magnetic and electric contrasts, choosing.ce.g,3
andy, = 2. In Fig. 2, the propagation constants of the TE modes are
The TM eigenmode profiles of the waveguide shown in Fig. 1 aghown. Besides the exact locations of the normalized modal constants
given by obtained with a numerical root-solving routine, the quasi-static eigen-
values is given, following the analytic formulas (10) and (15), which
were derived under the assumption (7). For increasing magnitudes of
3, the analytic expressions (10) and (15), respectively, for the leaky

IIl. THEORY—TM MODES

A cos(vrz) cos (70d~) e~ 1Py 0<z<d

H.(y, z)=4¢ N (5 — B 19) and Berenger modes, are seen to convergence to the exact locations
(=) Acos(yrd) cos [m (d +d- Z)] e, 49 of the normalized modal constanitgk., as illustrated in Tables | and
d<z<d+dair Il. Compared to the exact eigenvalue for the leaky modes, (10) yields
values with a 1% relative accuracy for> 12. For the Berenger modes,
with ~, and~, satisfying a 1% relative accuracy is obtained with (15) for> 27.
In Fig. 3, the propagation constants of the TE modes are shown,
- . 5 when there are no magnetic contrasts, i.e., wheg 3 andy, = 1.
Y cot(yrd) = Yo cot ( 0 d) (20) ¢ exact locations of the normalized modal constants obtained with a

numerical root-solving routine are compared to the quasi-static eigen-

with Y, = e.€0/, andYy = € /7. values, following the analytic formulas (13) and (18), which were de-
Following the same line of reasoning as in Section I, one can agaiged under assumption (7). Again, good agreement is seen between the

distinguish between leaky modes, depending on the microstrip s@xact locations of the eigenvalues and thealues obtained with the
strate, and Berenger modes, mainly influenced by the PMLe,Fgr1,  analytic expressions (13) and (18) whenewdrecomes large, as com-
one finds the following closed-form expression for the leaky mode spared tdk,, as demonstrated in Tables lll and IV. Compared to the exact
lution in the quasi-static limit: eigenvalue for the leaky modes, (13) yields values with a 1% relative
accuracy fom > 10. For the Berenger modes, a 1% relative accuracy
is obtained with (18) for > 27. Similar observations hold for the
propagation constants of the TM modes, as demonstrated in Fig. 4.

1

~ = log
'T 554 08

e — 1

2n+ )7
e+ 1 ’

2d

(1)

+
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Re (£) Wide-Bandwidth Millimeter-Wave
. . . Bond-Wire Interconnects

0 T T

s exact eigenvalues  ©

- quasi-static eigenvalues leaky modes ~ + 1
10 quasi-static eigenvalues Berenger modes = x ] Thomas P. Budka
o \

Im (g) -20 \\ Abstract—A new type of interconnect has been developed that signifi-
-25 \ cantly extends the bandwidth of fixed-length bond-wire interconnects be-
30 "oy tween microwave circuits. This interconnect maximizes bond-wire length,
a5 b \ as well as landing pad size while simultaneously extending the cutoff fre-
) quency of the interconnect. The bond-wire interconnect is treated as a five-
-40 ™ stage low-pass filter where basic filter theory is used to develop an intercon-
-45 ™y nect prototype. Microstrip interconnects are designed using electromag-
-50 . netic simulators, which match a specific low-pass filter response on a 5-mil-

0 5 10 15 20 25 30 35 thick (127 pm) glass substrates. The measurements indicate a return loss

greater than 12 dB and an insertion loss from 0.0 to 0.3 dB from dc to
) . . ) 80 GHz using two 17-mil-long (432.em) 1-mil-diameter (25 pem) ball bonds
Fig. 4. Location of the eigenvalues/ko of the TM modes for a with a tolerance of & 2 mil (50 zm). For comparison, an uncompensated
microstrip—PML configuration. interconnect with two 17-mil-long (432 m) bond wires has 1-dB insertion
loss and 10-dB return loss at 40 GHz and continues to degrade at higher
frequencies.
V. CONCLUSIONS

|. INTRODUCTION
Analytic expressions in the quasi-static limit are derived fortwo sets . , . . o . .
. ) i . - Historically, chip-to-chip interconnects using bond wires have been
of zeros, which exist in a microstrip substrate terminated by a PML, . . : ) S
. o ) nalyzed as having a single electrical component: a series inductor. In
For a strongly absorbing PML, it is shown that the first set corresponds . . o
. . order to improve the high-frequency performance of a bond-wire in-
to the leaky modes of the microstrip substrate, whereas the second set, .
. . . . terconnect, efforts have usually focused on reducing the length of the
termed Berenger modes, is not influenced by the microstrip substr%e.
As demonstrated by examples, the analytical formulas allow a qul&

End wire and also reducing the chip-to-chip spacing. However, lim-
calculation of the modal constants whenevefesjic < 3. Moreover, ations in manufacturing require longer bond-wire lengths and wider
the quasi-static expressions can be used as initial guesses in a numer-

chiP-to-chip spacing to improve the yields of millimeter-wave multi-
. - . : chip assemblies (MCAs). Therefore, the goal for millimeter-wave in-
ical root-finding routine that can provide more accurate values for the N~ . - .

: . . tﬁ]rconnect design is to maximize bond-wire length to improve manu-
zeros of the dispersion relation. Thereby, our results can speed up et' - L . .
) ) . . . facturability and maximize bond pad size so that mechanical tolerances
calculation of the Green’s function of the microstrip substrate termi- . . . ; )
. . are eased. This paper demonstrates that this is possible with a filter

nated by a PML, as discussed in [5]. ) -

theory approach to interconnect design.

A single bond-wire interconnect can be treated as a single-stage
low-pass filter with a fixed cutoff frequency. As more stages of the filter
are added, the bandwidth of the filter increases until adding additional
stages becomes inappropriate due to unacceptable filter losses. Usually
low-pass filters are between three and seven stages. For this specific

) design example, the bond-wire interconnect is treated as a five-stage
[1] J.P. Berenger, “Perfectly matched layer for the FDTD solution of wav:

structure interaction problemslEEE Trans. Antennas Propagatol. Efow-.pass f|I.ter. . . .

44, pp. 110-117, Jan. 1996. Fig. 1 displays a five-stage low-pass filter prototype with se-
[2] S.D.Gedney, “Ananisotropic PML absorbing media for the FDTD simfies inductors and shunt capacitors. There are well-known published

ulation of fields in lossy and dispersive medigjectromag.vol. 16, pp.  tables in the literature of the relative values of the inductances

399-415, 1996. , and capacitances for filter design [1]. For example, if a 0.5-dB
[3] W.C.Chew and W. H. Weedon, “A 3D perfectly matched medium from -riopl is desired. th inale ind fil Id
modified Maxwell's equations in stretched coordinateslicrowave equal-ripple response Is desired, then a single inductor filter wou

Opt. Technol. Lettvol. 7, no. 13, pp. 599-604, Sept. 1994. have an inductance di.70L. A five-stage equal-ripple filter with
[4] L. Knockaert and D. De Zutter, “On the stretching of Maxwell's equathe same cutoff frequency would have a center inductoR.6f L
tions in general orthogonal coordinate systems and the perfectly matchgsyy two outer inductors of.71L [2], where L is the inductance

'2""3’&;'" Microwave Opt. Technol. Leftvol. 24, no. 1, pp. 31-34, Jan. .+ selects the cutoff frequency of the filter. This implies that for

[5] H. Derudder, F. Olyslager, and D. De Zutter, “An efficient series expar?he same cutoff frequency of the single- and five-stage filter, the
sion for the 2-D Green’s function of a microstrip substrate using pegenter inductor in the five-stage design can have a 3.6 times higher
fectly matched layers [EEE Microwave Guided Wave Lettol. 9, pp.  inductance than a single inductor design. This directly translates
505-507, Dec. 1999. into a 3.6 times longer bond wire for the same cutoff frequency.

[6] P. Bienstman, H. Derudder, R. Baets, F. Olyslager, and D. De Zutt A - - . e .
“Analysis of cylindrical waveguide discontinuities using vectorial eigene-Irhe ability to lengthen the bond wires is critical for high-yield as

modes and perfectly matched layertEEE Trans. Microwave Theory Sembly of millimeter-wave multichip modules.
Tech, vol. 49, pp. 349-354, Feb. 2001.
[7] H. Derudder, F. Olyslager, D. De Zutter, and S. Van den Berghe, “Ef-
ficient mode-matching analysis of discontinuities in finite planar sub-
strates using perfectly matched layertEEE Trans. Antennas Prop-
agat, to be published. Manuscript received June 26, 2000.
[8] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. The author was with M/A-COM Research and Develpoment, Lowell, MA
Knuth, “On the Lambert W function,Adv. Comput. Mathvol. 5, no. 01853 USA. He is now with RF Microdevices, Billerica, MA 01821 USA.
4, pp. 329-359, 1996. Publisher Item Identifier S 0018-9480(01)02440-1.
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